- $4.5-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Operation

- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 9 ns at 5 V
- Inputs Are TTL-Voltage Compatible
description/ordering information
These 8 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'ACT574 devices are D-type edge-triggered flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines in a bus-organized system without need for interface or pullup components.

SN54ACT574 . . J OR W PACKAGE
SN74ACT574 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54ACT574... FK PACKAGE
(TOP VIEW)

$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube	SN74ACT574N	SN74ACT574N
	SOIC - DW	Tube	SN74ACT574DW	ACT574
		Tape and reel	SN74ACT574DWR	
	SOP - NS	Tape and reel	SN74ACT574NSR	ACT574
	SSOP - DB	Tape and reel	SN74ACT574DBR	AD574
	TSSOP - PW	Tape and reel	SN74ACT574PWR	AD574
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SNJ54ACT574J	SNJ54ACT574J
	CFP - W	Tube	SNJ54ACT574W	SNJ54ACT574W
	LCCC - FK	Tube	SNJ54ACT574FK	SNJ54ACT574FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
$\mathbf{O E}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic diagram (positive logic)

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

		SN54ACT574		SN74ACT574		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2	$\stackrel{ }{2}$	2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
V_{O}	Output voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current	5	-24		-24	mA
lOL	Low-level output current		24		24	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		8		8	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ACT574	SN74ACT574	UNIT
			MIN	TYP MAX	MIN MAX	MIN MAX	
V_{OH}	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	4.5 V	4.4	4.49	4.4	4.4	V
		5.5 V	5.4	5.49	5.4	5.4	
	$\mathrm{IOH}=-24 \mathrm{~mA}$	4.5 V	3.86		3.7	3.76	
		5.5 V	4.86		4.7	4.76	
	$\mathrm{IOH}=-50 \mathrm{mAt}$	5.5 V			3.85		
	$\mathrm{OH}=-75 \mathrm{~mA} \dagger$	5.5 V			+	3.85	
VOL	$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	4.5 V		0.1	0.1	0.1	V
		5.5 V		0.1	0.1	0.1	
	$\mathrm{OL}=24 \mathrm{~mA}$	4.5 V		0.36	- 0.44	0.44	
		5.5 V		0.36) 0.44	0.44	
	$\mathrm{IOL}=50 \mathrm{~mA}{ }^{\dagger}$	5.5 V			$\bigcirc \quad 1.65$		
	$\mathrm{IOL}=75 \mathrm{~mA} \dagger$	5.5 V			Q	1.65	
l OZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	5.5 V		± 0.25	± 5	± 2.5	$\mu \mathrm{A}$
I	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	5.5 V		± 0.1	± 1	± 1	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\quad \mathrm{IO}=0$	5.5 V		4	80	40	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{CC} \ddagger$	One input at 3.4 V , Other inputs at GND or V_{CC}	5.5 V		0.6	1.5	1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		4.5			pF

\dagger Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms .
\ddagger This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.
timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ACT574		SN74ACT574		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		100		70		85	MHz
t_{w}	Pulse duration, CLK high or low	3		5		4		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	2.5		3.5		2.5		ns
$\mathrm{th}^{\text {h }}$	Hold time, data after CLK \uparrow	1		2		1		ns

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ACT574		SN74ACT574		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\max }$			100	110		70	+	85		MHz
tPLH	CLK	Q	2.5	7	11	1.5	13.5	2	12	ns
tPHL			2	6.5	10	1.5	-12.5	1.5	11	
tPZH	$\overline{\mathrm{OE}}$	Q	2	6.4	9.5	1.5	11	1.5	10	ns
tpZL			2	6	9	1.5	11	1.5	10	
tPHZ	$\overline{\mathrm{OE}}$	Q	2	7	10.5	1.5	12	1.5	11.5	ns
tplZ			2	5.5	8.5	Q 1.5	10	1.5	9	

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=1 \mathrm{MHz}$	40

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

TEST	S1
$\mathrm{t}^{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}^{\mathbf{P L Z}} / \mathrm{t}_{\mathrm{PZL}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

NS (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

 14-PIN SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

28 PINS SHOWN

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

DIM	PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

